Temporal and Spatial Variations of Cosmogenic Radionuclide Production Rates in Chondrites During Their Passage Through the Inner Heliosphere
Galina Ustinova,
Victor Alexeev
Issue:
Volume 8, Issue 3, May 2020
Pages:
29-39
Received:
20 April 2020
Accepted:
6 May 2020
Published:
9 June 2020
Abstract: To study radiation environment in the interplanetary space, cosmogenic radionuclides in meteorites, the production rates of which are in direct proportionality to the intensity of cosmic rays, are used. The contents of cosmogenic radionuclides of different half-lives T1/2, measured in 42 stony meteorites (chondrites) having sequentially fallen onto the Earth during the period of 1959–2016, are analyzed. They are accumulated by the galactic cosmic rays (GCRs) along the orbits of the chondrites before their falls onto the Earth at some average heliocentric distances, depending on the size of the chondrite orbit and on T1/2 of the radionuclide. The comparison with the calculated production rates of radionuclides in the identical chondrites for isotropic irradiation by the GCRs at ~ 1 AU is demonstrated. The calculations are based on the stratospheric balloon monthly data on the GCR intensity [1] for the periods of accumulation of each radionuclide in each chondrite. The dependence of production rates of the radionuclides of different half-lives upon the GCR variations in the heliosphere is studied. The obtained long set of homogeneous data on cosmogenic radionuclide production rates in consecutively fallen chondrites provides the unique information on the space-time continuum of the cosmogenic radionuclide production rates and their variations over a long-time scale, which could be useful in the correlative analyses of processes in the inner heliosphere and, thus, in the forecast of radiation situation, which is important for the predicted manned flights.
Abstract: To study radiation environment in the interplanetary space, cosmogenic radionuclides in meteorites, the production rates of which are in direct proportionality to the intensity of cosmic rays, are used. The contents of cosmogenic radionuclides of different half-lives T1/2, measured in 42 stony meteorites (chondrites) having sequentially fallen onto...
Show More
Tunneling Through a One-Dimensional Square Potential Barrier Under Fluctuations in an Observer’s Frame of Reference
Issue:
Volume 8, Issue 3, May 2020
Pages:
40-45
Received:
11 May 2020
Accepted:
2 June 2020
Published:
15 June 2020
Abstract: This study reports tunneling through a one-dimensional (1D) square potential barrier (SPB) under fluctuations in an observer’s frame of reference (OFR). To date, tunneling through an SPB has been studied under the assumption that the OFR remains constant throughout the tunneling measurements; therefore, the change of the tunneling probability when the OFR is assumed to fluctuate remains unanswered. In this paper, a 1D SPB is considered under fluctuations of an OFR. The average transmission probability of a particle through an SBP for two types of OFR fluctuations (periodic-square-wave and periodic-sawtooth-wave fluctuations) is formulated in time representations. Under these types of fluctuations, the average transmission probability gradually increases with a particle’s energy, which is saturated to the transmission probability in the case of the stationary OFR at a much greater energy than the amplitude of the fluctuations. The average transmission probability is much higher at the amplitude of the fluctuations in the case of periodic-square-wave fluctuations. Therefore, the average transmission probability with a particle’s energy has the potential to reveal the distribution of OFR fluctuations.
Abstract: This study reports tunneling through a one-dimensional (1D) square potential barrier (SPB) under fluctuations in an observer’s frame of reference (OFR). To date, tunneling through an SPB has been studied under the assumption that the OFR remains constant throughout the tunneling measurements; therefore, the change of the tunneling probability when ...
Show More