Interpretation of Gyro Stability and Precession Mechanism by Law of Rotational Inertia
Issue:
Volume 8, Issue 1, January 2020
Pages:
1-7
Received:
31 January 2020
Accepted:
13 February 2020
Published:
19 February 2020
Abstract: The precession mechanism and stability of gyroscope is an outstanding problem. It has been widely believed for a long time that the precession of gyroscope is the result of the action of heavy moment. But this is not completely consistent with the experimental facts. This paper introduces the experimental phenomena of gyroscopic precession on the horizontal plane, presents the laws of rotational inertia and micro deformation action, gives the empirical expression of micro deformation action. The experimental phenomena of gyro precession are analyzed based on the principle of virtual fixed axis rotation balance and the law of conservation of momentum moment. The condition of whether the gyro can recover stable rotation state in certain condition is given, the determinants of precession angular velocity and rotation angular velocity of gyroscope and their relations are also given. The stability and precession mechanism of the gyroscope on the horizontal plane are explained comprehensively.
Abstract: The precession mechanism and stability of gyroscope is an outstanding problem. It has been widely believed for a long time that the precession of gyroscope is the result of the action of heavy moment. But this is not completely consistent with the experimental facts. This paper introduces the experimental phenomena of gyroscopic precession on the h...
Show More
Investigating the Effect of ZnSe (ETM) and Cu2O (HTM) on Absorber Layer on the Performance of Pervoskite Solar Cell Using SCAPS-1D
Joshua Adeyemi Owolabi,
Mohammed Yusuf Onimisi,
Jessica Amuchi Ukwenya,
Alexander Bulus Bature,
Ugbe Raphael Ushiekpan
Issue:
Volume 8, Issue 1, January 2020
Pages:
8-18
Received:
19 December 2019
Accepted:
6 February 2020
Published:
17 March 2020
Abstract: Tin perovskite (CH3NH3SnI3) have attracted a lot of attention and could be a viable alternative material to replace lead perovskite in thin film solar cells. A detailed understanding on the effects of each component of a solar cell on its output performance is needed to further develop the technology. In this work, a numerical simulation of a planar hetero-junction tin based perovskite solar cell using Solar Cell Capacitance Simulator (SCAPS) to study some parameters that can influence the performance of tin PSC with Cu2O as HTL and ZnSe as ETL performed. The thickness of absorber material, ETL and HTL, the bandgap of absorber material and ETL was investigated. Results revealed that the thickness and bandgap of the absorber material and ETL of ZnSe strongly influence the PCE of the device. The performance of the cell increases with reduction in thickness of ZnSe. ZnSe is found to be a replacement for TiO2 which is expensive. Cuprous oxide of HTL in tin based PSC is efficient and better than the expensive spiro-MeOTAD which is easily degradable. Furthermore, results of simulation and optimization of various thicknesses indicates that ZnSe has a PCE of 21.11%, FF of 68.33%, JSC of 33.51mA/cm2 and VOC of 0.92V. These values slightly increase after optimization of parameters to PCE of 22.28%, FF of 70.94%, JSC of 31.01mA/cm2 and VOC of 1.01V.
Abstract: Tin perovskite (CH3NH3SnI3) have attracted a lot of attention and could be a viable alternative material to replace lead perovskite in thin film solar cells. A detailed understanding on the effects of each component of a solar cell on its output performance is needed to further develop the technology. In this work, a numerical simulation of a plana...
Show More