Study on the Single-Lens Telescope and Its Imaging Parameters
Kaixin Pan,
Yiran Liu,
Zhimin Pan
Issue:
Volume 7, Issue 6, November 2019
Pages:
136-143
Received:
5 April 2019
Accepted:
24 June 2019
Published:
7 November 2019
Abstract: From Galileo telescope designed in 1609 to the recent advanced astronomical telescope, telescopes always help people in coping with different problem. The relation between the parameters of telescope and its performance has been a hot topic for a long time. In this paper, we have designed a simple single-lens telescope based on the Problem No. 3 in International Young Physicist Tournament (IYPT2017) and have done the research related to the performance of our telescope. Here, we mainly focus on the magnification, the contrast and the brightness To demonstrate the performance of our single-lens telescope, According to the theories of geometric optics and physical optics, we have systematically explored the influences of aperture and focal length on the magnification of the telescope, the contrast and brightness of the images and so on, we have experimentally conducted quantitative studies by varying these parameters and elaborate analysis of data with software including MATLAB and Toup View. According to the data and numerical simulation we get in our experiment, we found that our experimental results are consistent with our theory so that a generic conclusion has been drawn. Besides, possible origination of errors in the studies has been discussed and an outlook has been proposed.
Abstract: From Galileo telescope designed in 1609 to the recent advanced astronomical telescope, telescopes always help people in coping with different problem. The relation between the parameters of telescope and its performance has been a hot topic for a long time. In this paper, we have designed a simple single-lens telescope based on the Problem No. 3 in...
Show More
Can Interactive Dual Fields of Information Explain the Prevalent Phenomena
Issue:
Volume 7, Issue 6, November 2019
Pages:
144-155
Received:
14 December 2019
Accepted:
26 December 2019
Published:
8 January 2020
Abstract: The occurrence of prevalent phenomena is an almost unclear but interesting subject for us. Here we have constructed a dual model of information fields originated from the news media and showed that the quasi-cyclic appearance of prevalence can be explained by such a model. The homogeneous field of information around us was assumed, which is composed of the real field originated from the primary media such as newspapers and the television, and the cyber field from the PC and smart phones. The latter field is of the SNS cyber world affected by the field of real world. The public was assumed to be influenced simultaneously by these two types of fields to result in the enhancement of the awareness of some specific things. To investigate the viability of such a dual model, inputting the data of the real field regarding the global warming (GW) already reported in Japan as an external variable, the feature was derived in what manner the public awareness of GW had varied during the past ~35 years. The high public awareness was found to be realized at around 2009 when the information environment was explosively enhanced in the real world. Such enhancement of the awareness could be explained by the contribution from the cyber field, which was brought by the instability of the field, or a burst, induced by a small perturbation from the real field. A possibility was pointed out that the spontaneous occurrence of quasi-cyclic instability such as the case of our explosive awareness could take place in the interactive dual system of information between the real and cyber fields. We pointed out that the spontaneous occurrence of prevalence in general could be explained also by the similar mechanism as ours.
Abstract: The occurrence of prevalent phenomena is an almost unclear but interesting subject for us. Here we have constructed a dual model of information fields originated from the news media and showed that the quasi-cyclic appearance of prevalence can be explained by such a model. The homogeneous field of information around us was assumed, which is compose...
Show More