Volume 7, Issue 4, July 2019, Page: 93-100
Quantum Theory of Fields and Properties of Quantum Systems
Fernand Tshizanga Mpinga, Department of Mechanics, Superior Institute of Applied Techniques, Kinshasa, Democratic Republic of Congo
Received: Apr. 27, 2019;       Accepted: Jun. 3, 2019;       Published: Jul. 4, 2019
DOI: 10.11648/j.ajpa.20190704.11      View  184      Downloads  63
Abstract
Quantum theory of fields is the most general theory to date. It has an extremely wide field of application: - the physics of elementary particles and their interactions (summarized by the Standard Model); - the physics of the universe close to the Big Bang (primordial fluctuations from which the formation of the structure of the universe originates, evaporation of black holes, Hawking radiation); - the formalism of condensed matter physics, with applications such as superconductivity, superfluidity, phase transitions. Indeed, the quantum theory of fields has been successfully implemented in quantum systems, notably in research on fundamental state energy, elementary excitations spectrum, degeneracy parameters: long range order, Bogoliubov approximation, density matrix diagonalization,…, as well as the characteristics of these systems: movement equation, dynamics of the system,…. Three different quantum systems were concerned in this theoretical study: - a gas of identical atoms of spin zero confined into the trap; - electron gas of spin ½ into the metal; - and a gathering of identical ions of spin zero at high density confined into a radiofrequency linear Paul trap. The microscopic theory was used in the each case and the results obtained by the researchers are presented.
Keywords
Quantum Theory of Fields, Quantum Systems, Microscopic Theory, Bosons, Fermions, Second Quantization, Density Matrix, Fundamental State Energy
To cite this article
Fernand Tshizanga Mpinga, Quantum Theory of Fields and Properties of Quantum Systems, American Journal of Physics and Applications. Vol. 7, No. 4, 2019, pp. 93-100. doi: 10.11648/j.ajpa.20190704.11
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Weinberg S. (1995). The quantum theory of fields. Cambridge university press, volume I and II. New York.
[2]
Brantut J. P., Manipulation d’atomes froids dans des potentiels lumineux, thèse de doctorat, 2009.
[3]
Dieckmann K., Spreeuw R. J. C, Weidemüller M. & Walraven J. T. M. (1998). Two-dimensional magneto-optical trap as a source of slow atoms. Phys. Rev. A, vol. 58, no 5, pages 389163895, Nov.
[4]
Vittel C. (1967). Théorie Quantique du Solide. Dunod, Paris.
[5]
Tshizanga (2011). Dégénérescence quantique d’un système de bosons chargés identiques de spin zéro dans un piège de Paul. Thèse de doctorat, Université Nationale Pédagogique de Kinshasa. Tel-00760356, Version1- 6 Déc. 2012.
[6]
Shaposhnikov M., (2007). Champs Quantiques Relativistes, EPF, Lausanne.
[7]
Pagels H., (1985). L’univers quantique. InterEditions, Paris.
[8]
Delamotte B. (2005). Introduction à la théorie quantique des champs. www.Iptmc.jussieu.fr.
[9]
Nozières P. and Pines D. (1999). The theory of quantum liquids. Perseus books, Cambridge.
[10]
Pethick C. J., Smith H. (2002). Bose–Einstein Condensation in Dilute Gases. Cambridge University Press. UK.
[11]
Govaerts J., (1995), L'interaction électrofaible: une fenêtre sur la physique au-delà du Modèle Standard, Procedings of the \Ecole Internationale Joliot-Curie de Physique Nucléaire, Noyaux en Collisions", Maubuisson (France), 11 - 16 Septembre 1995, éd. Y. Abgrall, pp. 333-416.
[12]
Caradoc-Davies B. M. (2000). Vortex Dynamics in Bose-Einstein Condensates, These, University of Otago, 200 pages (2000).
[13]
Tshizanga (2016), Hartree-Fock Equation for a Non-neutral Plasma of Spin Zero Ions in a Paul Trap; American Journal of Physics and Applications. Vol. 4, No. 3, 2016, pp. 71-77. doi: 10.11648/j.ajpa.20160403.11.
[14]
Dalfovo F., Giorgini S., Pitaevskii L. P. and Stringari S. (1999), Theory of Bose-Einstein condensation in trapped gases. Reviews of Modern Physics, Vol. 71, No. 3, April, pp 463-512.
[15]
Tshizanga F. M., Badibanga P. M. and Ntampaka B. B. (2014), An investigation into the Parameters of Quantum Degeneration of an Ultra Cold Non-Neutre Plasma of identical Ions of Zero Spin in a Paul Trap. International Journal of Measurement Technologies and Instrumentation Engineering, 4 (1), 51-70. January-March 2014.
[16]
Pei-Lin You, Large-Scale Bose-Einstein condensation in a vapor of cesium atoms at normal temperature (T=353K), J Material Sci Eng 5: 276 (2016). Doi: 10. 4172/2169-0022.1000276.
[17]
Pei-Lin Yu. Large-Scale Bose-Einstein Condensation in an Atomic Gas by Applying an Electric Field. American Journal of Modern Physics. Vol. 7. No 4, 2018, pp. 121-130. doi: 10.11648/j.ajmp.20180704.11.
[18]
Pei-Lin You, Bose-Einstein condensation in a vapor of sodium atoms in an electric field, Physica B: condensed matter physics 491(2016) 8492, http://dx.doi.org/10.1016/j.physb.2016.03.017.
[19]
Mortensen A. Aspects of Ion Coulomb Crystal based Quantum Memory for Light. PhD thesis; 2005.
[20]
Dubess R. Réalisation, étude et exploitation d’ensembles d’ions refroidis par laser stockés dans des pièges micro-fabriqués pour l’information quantique. These de doctorat. 2011.
Browse journals by subject